Double-Well Ultracold-Fermions Computational Microscopy: Wave-Function Anatomy of Attractive-Pairing and Wigner-Molecule Entanglement and Natural Orbitals
详细信息    查看全文
文摘
鈥淏ottom-up鈥?approaches to the many-body physics of fermions have recently demonstrated precise number and site-resolved preparations with tunability of interparticle interactions in single-well, SW, and double-well, DW, nanoscale confinements created by manipulating ultracold fermionic atoms with optical tweezers. These experiments emulate an analogue-simulator mapping onto the requisite microscopic Hamiltonian, approaching realization of Feynmans鈥?vision of quantum simulators that 鈥渨ill do exactly the same as nature鈥? Here we report on exact benchmark configuration鈥搃nteraction computational microscopy solutions of the Hamiltonian, uncovering the spectral evolution, wave function anatomy, and entanglement properties of the interacting fermions in the entire parameter range, including crossover from an SW to a DW confinement and a controllable energy imbalance between the wells. We demonstrate attractive pairing and formation of repulsive, highly correlated, ultracold Wigner molecules, well-described in the natural orbital representation. The agreement with the measurements affirms the henceforth gained deep insights into ultracold molecules and opens access to the size-dependent evolution of nanoclustered and condensed-matter phases and ultracold-atoms quantum information.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700