Charge Carrier Generation Followed by Triplet State Formation, Annihilation, and Carrier Recreation in PBDTTT-C/PC60BM Photovoltaic Blends
详细信息    查看全文
文摘
Triplet state formation after photoexcitation of low-bandgap polymer/fullerene blends has recently been demonstrated; however, the precise mechanism and its impact on solar cell performance is still under debate. Here, we study exciton dissociation, charge carrier generation, and triplet state formation in low-bandgap polymer PBDTTT-C/PC60BM bulk heterojunction photovoltaic blends by a combination of fs鈭捨約 broadband vis-NIR transient absorption (TA) pump鈥損robe spectroscopy and multivariate curve resolution (MCR) data analysis. We found sub-ps exciton dissociation and charge generation followed by sub-ns triplet state creation. The carrier dynamics and triplet state dynamics exhibited a very pronounced intensity dependence, indicating nongeminate recombination of free carriers is the origin of triplet formation in these blends. Triplets were found to be the dominant state present on the nanosecond time scale. Surprisingly, the carrier population increased again on the ns鈭捨約 time scale. We attribute this to triplet鈥搕riplet annihilation and the formation of higher energy excited states that subsequently underwent charge transfer. This unique dip and recovery of the charge population is a clear indication that triplets are formed by nongeminate recombination, as such a kinetic is incompatible with a monomolecular triplet state formation process.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700