Double Resolution Model for Studying TMAO/Water Effective Interactions
详细信息    查看全文
  • 作者:Luca Larini ; Joan-Emma Shea
  • 刊名:Journal of Physical Chemistry B
  • 出版年:2013
  • 出版时间:October 24, 2013
  • 年:2013
  • 卷:117
  • 期:42
  • 页码:13268-13277
  • 全文大小:346K
  • 年卷期:v.117,no.42(October 24, 2013)
  • ISSN:1520-5207
文摘
The structural properties of water molecules surrounding TMAO molecules are studied using a newly developed atomistic force field for TMAO, combined with a multiscale coarse-graining (MS-CG) force field derived from the atomistic simulations. The all-atom force field is parametrized to work with the OPLS force field and with SPC, TIP3P, and TIP4P water models. The dual-resolution modeling enables a complete study of the dynamical and structural properties of the system, with the CG model providing important new physical insights into which interactions are critical in determining the structure of water around TMAO. TMAO is an osmolyte that stabilizes protein structures under conditions of chemical, thermal, and pressure denaturation. This molecule is excluded from the surface of proteins, and its effect on protein stability is mediated through TMAO鈥搘ater interactions. We find that TMAO strongly binds two to three water molecules and, surprisingly, that methyl groups repel both the other methyl groups of TMAO and water molecules alike. The latter result is important because it shows that methyl groups are not interacting with each other through the expected hydrophobic effect (which would be attractive and not repulsive) and that the repulsion of water molecules forces a clathrate-like hydrogen bond network around them. We speculate that TMAO is excluded from the vicinity of the protein because the peculiar structure of water around TMAO prevents this molecule from coming in close contact with the protein.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700