Investigation of Gaussian4 Theory for Transition Metal Thermochemistry
详细信息    查看全文
文摘
An investigation of the performance of Gaussian-4 (G4) methods for the prediction of 3d transition metal thermochemistry is presented. Using the recently developed G3Large basis sets for atoms Sc−Zn, the G4 and G4(MP2) methods with scalar relativistic effects included are evaluated on a test set of 20 enthalpies of formation of transition metal-containing molecules. The G4(MP2) method is found to perform significantly better than the G4 method. The G4 method fails due to the poor convergence of the Møller−Plesset perturbation theory at fourth-order in one case. The overall error for G4(MP2) of 2.84 kcal/mol is significantly larger than its previously reported performance for molecules containing main-group elements in the G3/05 test set. However, considering the relatively large uncertainties in the experimental enthalpies, the G4(MP2) method performs reasonably well. The performance of other composite methods based on G3 theory [G3(CCSD)//B3LYP and G3(MP2,CCSD)//B3LYP], as well as several density functional methods, are also presented in this paper. The results presented here will assist future development of composite model techniques suitable for use in transition metal-containing systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700