Plasmonic Nanoclusters: Near Field Properties of the Fano Resonance Interrogated with SERS
详细信息    查看全文
文摘
While the far field properties of Fano resonances are well-known, clusters of plasmonic nanoparticles also possess Fano resonances with unique and spatially complex near field properties. Here we examine the near field properties of individual Fano resonant plasmonic clusters using surface-enhanced Raman scattering (SERS) both from molecules distributed randomly on the structure and from dielectric nanoparticles deposited at specific locations within the cluster. Cluster size, geometry, and interparticle spacing all modify the near field properties of the Fano resonance. For molecules, the spatially dependent SERS response obtained from near field calculations correlates well with the relative SERS intensities observed for individual clusters and for specific Stokes modes of a para-mercaptoaniline adsorbate. In all cases, the largest SERS enhancement is found when both the excitation and the Stokes shifted wavelengths overlap the Fano resonances. In contrast, for SERS from carbon nanoparticles we find that the dielectric screening introduced by the nanoparticle can drastically redistribute the field enhancement associated with the Fano resonance and lead to a significantly modified SERS response compared to what would be anticipated from the bare nanocluster.

Keywords:

Fano resonance; surface-enhanced Raman scattering (SERS); plasmon; hot spot; cluster

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700