Shear Thinning Three-Dimensional Colloidal Assemblies of Chitosan and Poly(lactic acid) Nanoparticles
详细信息    查看全文
文摘
In this study, new materials capable of reversible self-assembly, based on concentrated negatively charged poly(lactic acid) nanoparticles and chitosan, a natural polycationic polymer, were successfully fabricated. Electrostatic interactions between oppositely charged components along with weaker interactions led to the formation of a 3D network. The resulting macroscopic assemblies were characterized by dynamic mechanical measurements, and the influences of various parameters such as chitosan/poly(lactic acid) weight ratio, duration and temperature of the mixture, and molecular weight or chitosan degree of acetylation were studied. Our results showed that the mechanical properties of assemblies were highly dependent on the nanoparticle solid content and chitosan/nanoparticle ratio. In particular, at an optimum weight ratio the colloidal assemblies exhibited remarkable high elastic moduli (about 300 kPa) for a particle solid content of 18% w/w. Thanks to the weak and reversible nature of the interactions, these materials exhibited shear thinning properties, and could instantly recover their cohesiveness at rest. The mode of interactions between PLA particles and chitosan was shown to be in part due to electrostatic interactions, but the cross-linking of chitosan-covered particles was attributed to hydrogen bonding. These materials could be envisaged as good candidates for injectable scaffolds for tissue engineering, taking advantage of the biocompatibility and bioactivity of both components. However, some issues concerning temperature stability must be resolved before applying these colloidal assemblies to cell growth in physiological conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700