Reactions and Surface Interactions of Saccharides in Cement Slurries
详细信息    查看全文
文摘
Glucose, maltodextrin, and sucrose exhibit significant differences in their alkaline reaction properties and interactions in aluminate/silicate cement slurries that result in diverse hydration behaviors of cements. Using 1D solution- and solid-state 13C nuclear magnetic resonance (NMR), the structures of these closely related saccharides are identified in aqueous cement slurry solutions and as adsorbed on inorganic oxide cement surfaces during the early stages of hydration. Solid-state 1D 29Si and 2D 27Al{1H} and 13C{1H} NMR techniques, including the use of very high magnetic fields (18.8 T), allow the characterization of the hydrating silicate and aluminate surfaces, where interactions with adsorbed organic species influence hydration. These measurements establish the molecular features of the different saccharides that account for their different adsorption behaviors in hydrating cements. Specifically, sucrose is stable in alkaline cement slurries and exhibits selective adsorption at hydrating silicate surfaces but not at aluminate surfaces in cements. In contrast, glucose degrades into linear saccharinic or other carboxylic acids that adsorb relatively weakly and nonselectively on nonhydrated and hydrated cement particle surfaces. Maltodextrin exhibits intermediate reaction and sorption properties because of its oligomeric glucosidic structure that yields linear carboxylic acids and stable ring-containing degradation products that are similar to those of the glucose degradation products and sucrose, respectively. Such different reaction and adsorption behaviors provide insight into the factors responsible for the large differences in the rates at which aluminate and silicate cement species hydrate in the presence of otherwise closely related saccharides.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700