Delocalized Currents without a Ring of Bonded Atoms: Strong Delocalized Electron Currents Induced by Magnetic Fields in Noncyclic Molecules
详细信息    查看全文
文摘
Some noncyclic small molecules, electrically neutral or charged, sustain interatomic electronic currents in the presence of a stationary, spatially uniform magnetic field. The existence of fairly large delocalized electron flow is demonstrated in H2O, BH3, NH3, CH4, CH3鈥揅H3, H3O+, CH3+, and NH4+, by plots of quantum mechanical current density. Convincing quantitative evidence is arrived at by current strengths, defined via a flux integral of the ab initio current density. Application of a simple ring current model shows that the delocalized current strengths account for the out-of-plane component of the magnetic shielding tensor along the symmetry axis. A definition of delocalized electron current as a current flowing along a closed loop containing three or more atoms is discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700