Electronic Structure of Interfaces between Thiophene and TiO2 Nanostructures
详细信息    查看全文
文摘
We investigated the electronic properties of hybrid combinations of organic鈥搃norganic interfaces relevant for photovoltaic applications, a thiophene (molecule or polymer) and a TiO2-anatase nanostructure, using ab initio density functional theory (DFT) and many-body perturbation theory calculations for model systems. The DFT results concerning electronic charge distribution show interface states coupling the polymer to the oxide substrate at the molecule鈥檚 lowest unoccupied state, favoring electron transfer from the organic to the oxide through photoexcitation. Concerning the energy level structure, DFT predicts a virtually zero effective energy gap between polymer valence and oxide conduction bands. The GW-based results lead to proper band alignment, restoring the interface energy gap, and at the same time highlight the confinement effects to be expected for oxide nanostructures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700