Controlled DNA Patterning by Chemical Lift-Off Lithography: Matrix Matters
详细信息    查看全文
文摘
Nucleotide arrays require controlled surface densities and minimal nucleotide鈥搒ubstrate interactions to enable highly specific and efficient recognition by corresponding targets. We investigated chemical lift-off lithography with hydroxyl- and oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers as a means to produce substrates optimized for tethered DNA insertion into post-lift-off regions. Residual alkanethiols in the patterned regions after lift-off lithography enabled the formation of patterned DNA monolayers that favored hybridization with target DNA. Nucleotide densities were tunable by altering surface chemistries and alkanethiol ratios prior to lift-off. Lithography-induced conformational changes in oligo(ethylene glycol)-terminated monolayers hindered nucleotide insertion but could be used to advantage via mixed monolayers or double-lift-off lithography. Compared to thiolated DNA self-assembly alone or with alkanethiol backfilling, preparation of functional nucleotide arrays by chemical lift-off lithography enables superior hybridization efficiency and tunability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700