Differential Cell Adhesion on Mesoporous Silicon Substrates
详细信息    查看全文
文摘
Porous silicon (PSi) is a promising material in several biomedical applications because of its biocompatibility and biodegradability. Despite the plethora of studies focusing on the interaction of cells with micrometer and submicro geometrical features, limited information is available on the response of cells to substrates with a quasi-regular distribution of nanoscopic pores. Here, the behavior of four different cell types is analyzed on two mesoporous (MeP) silicon substrates, with an average pore size of 5 (MeP1) and 20 nm (MeP2), respectively. On both MeP substrates, cells are observed to spread and adhere in a larger number as compared to flat silicon wafers. At all considered time points, the surface density of the adhering cells nd is larger on the PSi substrate with the smaller average pore size (MeP1). At 60 h, nd is from 1.5 to 5 times larger on MeP1 than on MeP2 substrates, depending on the cell type. The higher rates of proliferation are observed for the two neuronal cell types, the mouse neuroblastoma cells (N2A) and the immortalized human cortical neuronal cells (HCN1A). It is speculated that the higher adhesion on MeP1 could be attributed to a preferential matching of the substrate topography with the recently observed multiscale molecular architecture of focal adhesions. These results have implications in the rational development of PSi substrates for supporting cell adhesion and controlling drug release in implants and scaffolds for tissue engineering applications.

Keywords:

mesoporous silicon; nanoscale topography; cell adhesion; optimal pore size; silicon implants; tissue engineering

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700