Time-Resolved and Mechanistic Study of the Photochemical Uncaging Reaction of the o-Hydroxycinnamic Caged Compound
详细信息    查看全文
文摘
The o-hydroxycinnamic derivatives represent efficient caged compounds that can realize quantification of delivery upon uncaging, but there has been lack of time-resolved and mechanistic studies. We used time-resolved infrared (TRIR) spectroscopy to investigate the photochemical uncaging dynamics of the prototype o-hydroxycinnamic compound, (E)-3-(2-hydroxyphenyl)-acrylic acid ethyl ester (HAAEE), leading to coumarin and ethanol upon uncaging. Taking advantage of the specific vibrational marker bands and the IR discerning capability, we have identified and distinguished two key intermediate species, the cis-isomers of HAAEE and the tetrahedral intermediate, in the transient infrared spectra, thus providing clear spectral evidence to support the intramolecular nucleophilic addition mechanism following the trans鈥揷is photoisomerization. Moreover, the product yields of coumarin upon uncaging were observed to be greatly affected by the solvent polarity, suppressed in CH2Cl2 but enhanced in D2O/CH3CN with the increasing volume ratio of D2O. The highly solvent-dependent behavior indicates E1 elimination of the tetrahedral intermediate to give rise to the final uncaging product coumarin. The photorelease rate of coumarin was directly characterized from TRIR (3.6 脳 106 s鈥?), revealing the promising application of such o-hydroxycinnamic compound in producing fast alcohol jumps. The TRIR results provide the first time-resolved detection and thus offer direct dynamical information about this photochemical uncaging reaction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700