Theoretical Studies of the Base Pair Fidelity of Selenium-Modified DNA
详细信息    查看全文
文摘
The introduction of selenium into DNA in the place of oxygen provides a unique opportunity for studying the fidelity of DNA replication, as well as providing advantages in the growth of DNA crystals and the greater resolution of their structures. However, the atomic mechanisms of the relative stability and base pair recognition of the selenium-modified DNA are poorly understood. In the present study, quantum mechanics calculations were performed on base pairings, base stacking, and base鈥搘ater interactions for both unmodified thymine and thymine with the 2-exo-oxygen replaced with selenium, and the results were used to develop and validate CHARMM force field parameters for the 2-Se-thymine. Subsequently, molecular dynamics simulations and free-energy perturbation calculations were performed on 11-base DNA sequences containing native thymine and the 2-Se-thymine. The calculated relative free-energy values are in good agreement with experimentally determined relative stability, where the 2-Se-thymine offers similar stability to T-A in cognate DNA, while it dramatically destabilizes the DNA containing the T-G mismatch base pair when 2-Se-thymine is incorporated. Thus, 2-Se-thymine largely increases the native T-A base pair fidelity by discouraging the T-G wobble pair. Insights into the high pairing specificity and the relative stability of selenium-modified DNA were obtained based on detailed structural and energetic analysis of molecular dynamics trajectories. Our studies move one step further toward an understanding of the high base pair fidelity and thermodynamic properties of Se-DNA in solution and in protein鈥揇NA complexes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700