Investigation of the Mechanism of Mg Insertion in Birnessite in Nonaqueous and Aqueous Rechargeable Mg-Ion Batteries
详细信息    查看全文
文摘
Magnesium batteries are an energy storage system that potentially offers high energy density, but development of new high voltage cathode materials and understanding of their electrochemical mechanism are critical to realize its benefits. Herein, we synthesize the layered MnO2 polymorph (the birnessite phase) as a nanostructured phase supported on conductive carbon cloth and compare its electrochemistry and structural changes when it is cycled as a positive electrode material in a Mg-ion battery under nonaqueous or aqueous conditions. X-ray photoelectron spectroscopy and transmission electron microscopy studies show that a conversion mechanism takes place during cycling in a nonaqueous electrolyte, with the formation of MnOOH, MnO, and Mg(OH)2 upon discharge. In aqueous cells, on the other hand, intercalation of Mg2+ ions takes place, accompanied by expulsion of interlayer water and transformation to a spinel-like phase as evidenced by X-ray diffraction. Both systems are structurally quasireversible. The sharp contrast in behavior in the two electrolytes points to the important role of the desolvation energy of the Mg2+ cation in nonaqueous systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700