Sensitive Water Probing through Nonlinear Photon Upconversion of Lanthanide-Doped Nanoparticles
详细信息    查看全文
  • 作者:Shaohong Guo ; Xiaoji Xie ; Ling Huang ; Wei Huang
  • 刊名:ACS Applied Materials & Interfaces
  • 出版年:2016
  • 出版时间:January 13, 2016
  • 年:2016
  • 卷:8
  • 期:1
  • 页码:847-853
  • 全文大小:463K
  • ISSN:1944-8252
文摘
Lanthanide-doped upconversion nanoparticles have received growing attention in the development of low-background, highly sensitive and selective sensors. Here, we report a water probe based on ligand-free NaYF4:Yb/Er nanoparticles, utilizing their intrinsically nonlinear upconversion process. The water molecule sensing was realized by monitoring the upconversion emission quenching, which is mainly attributed to efficient energy transfer between upconversion nanoparticles and water molecules as well as water-absorption-induced excitation energy attenuation. The nonlinear upconversion process, together with power function relationship between upconversion emission intensity and excitation power density, offers a sensitive detection of water content down to 0.008 vol % (80 ppm) in an organic solvent. As an added benefit, we show that noncontact detection of water can be achieved just by using water attenuation effect. Moreover, these upconversion nanoparticle based recyclable probes should be particularly suitable for real-time and long-term water monitoring, due to their superior chemical and physical stability. These results could provide insights into the design of upconversion nanoparticle based sensors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700