Block-Localized Wavefunction (BLW) Based Two-State Approach for Charge Transfers between Phenyl Rings
详细信息    查看全文
文摘
The block-localized wave function (BLW) method is the simplest and most efficient variant of ab initio valence bond (VB) theory which defines electron-localized resonance states following the conventional VB concepts. Here, a BLW-based two-state approach is proposed to probe the charge/hole transfer reactions within the Marcus鈥揌ush model. With this approach, both the electronic coupling and reorganization energies can be derived at the ab initio level. Pilot applications to the electron/hole transfers between two phenyl rings are presented. Good exponential correlation between the electronic coupling energy and the donor鈥揳cceptor distance is shown, whereas the inner-sphere reorganization shows little geometric dependency. Computations also support the assumption in Marcus theory that the thermal electron transfer barrier (螖G*), which is a sum of the reaction barrier (螖Ea) for electron/hole transfer and the coupling energy (VAB), is a quarter of the reorganization energy (位).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700