Self-Assembly of Supramolecular Fullerene Ribbons via Hydrogen-Bonding Interactions and Their Impact on Fullerene Electronic Interactions and Charge Carrier Mobility
详细信息    查看全文
文摘
The anisotropy of the electronic interactions between fullerenes in crystalline solids was examined using a confocal fluorescence microscope by probing the polarization of the fluorescence emission arising from fullerene excimer-like emitting states. Crystals of C60 obtained by vacuum-sublimation or from chloroform solution exhibited no or little polarization (p = 0 or 0.11, respectively), as expected from the high symmetry of the C60 fcc lattice or the low degree of anisotropy induced by included solvent molecules. The use of hydrogen-bonding to supramolecularly control interfullerene electronic interactions was explored using a fullerene derivative (1) combining a solubilizing 3,4-di-tert-butylbenzene group and a barbituric acid hydrogen-bonding (H-B) moiety. The crystal structure of 1 establishes the existence of fullerene H-B tapes along which interfullerene electronic interactions are expected to be large. In agreement with this, we observe very strong polarization of the fullerene excimer-like emission (p = 0.78), indicative of a high degree of anisotropy in the fullerene interactions. The charge-carrier mobility of 1 as determined from OFET devices was found to be lower than that of C60 (1.2 × 10−4 vs 1.2 × 10−2 cm2/s V), which is rationalized on the basis of the reduced dimensionality of 1 as a wire-like semiconductor and variations in the morphology of the device active layer revealed by AFM measurments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700