Experimental and Computational Evidence for the Participation of Nonclassical Dihydrogen Species in Proton Transfer Processes on Ru鈥揂rene Complexes with Uncoordinated N Centers. Efficient Catalytic De
详细信息    查看全文
文摘
The protonation with Br酶nsted acids HB (HBF4 and CF3CO2H) of [RuH2(arene)(PPh2Het)] derivatives (PPh2Het = dpim, Het = 2-N-methylimidazolyl; PPh2Het = PPh2py, Het = 2-pyridyl) that contain uncoordinated N atoms has been analyzed experimentally by NMR spectroscopy and through computational studies. Initially, at low temperature, the uncoordinated N atoms of the phosphine are protonated and a proton鈥揾ydride exchange is observed by 1H NMR spectroscopy. The proton transfer leads to the corresponding cationic trihydride intermediates, which exhibit a dual character of classical and nonclassical hydrides, with the nonclassical species being more stable, especially when Het = 2-pyridyl. In fact, the release of H2 and the formation of the respective monohydride complexes [RuH(arene)(魏2-N,P-PPh2Het)]B was observed at room temperature. The participation of the uncoordinated N center in the proton transfer process in the stabilization of RuH(H2)+ with respect to RuH3+ species and in the hydride鈥揹ihydrogen exchange (cis effect) are discussed. Calculations on the complex [RuH3(p-cymene)(PPh3)]+ have also been carried out for the sake of comparison. A dual character was also found, but in this case the classical species is more stable. H/D exchange of the hydride ligands of the dihydride complexes, using CD3OD as the deuterium source, has been studied. The very rapid deuterium labeling of H2, catalyzed by the aforementioned dihydrides, has been observed. The known compound [RuH2(p-cymene)(PPh3)] is also active in this labeling process, and the possible mechanism for both the H/D exchange and the deuterium labeling of H2 is discussed in light of theoretical studies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700