How Bond Length Alternation and Thermal Disorder Affect the Optical Excitation Energies of π-Conjugated Chains: A Combined Density Functional Theory and Molecular Dynamics Study
详细信息    查看全文
  • 作者:Juliana Bois ; Thomas Körzdörfer
  • 刊名:Journal of Chemical Theory and Computation
  • 出版年:2016
  • 出版时间:April 12, 2016
  • 年:2016
  • 卷:12
  • 期:4
  • 页码:1872-1882
  • 全文大小:709K
  • 年卷期:0
  • ISSN:1549-9626
文摘
We dissect the sources of error leading to inaccuracies in the description of the geometry and optical excitation energies of π-conjugated polymers. While the ground-state bond length alternation is shown to be badly reproduced by standard functionals, the recently adapted functionals PBEh* and ωPBE* as well as the double hybrid functional XYGJ-OS manage to replicate results obtained at the CCSD(T) level. By analysis of the bond length alternation in the excited state, a sensitive dependence of the exciton localization on the long-range behavior of the functional and the amount of Hartree–Fock exchange present is shown. Introducing thermal disorder through molecular dynamics simulations allows the consideration of a range of thermally accessible configurations of each oligomer, including trans to cis rotations, which break the conjugation of the backbone. Thermal disorder has a considerable effect when combined with functionals that overestimate the delocalization of the excitation, such as B3LYP. For functionals with a larger amount of exact exchange such as our PBEh* and ωPBE*, however, the effect is small, as excitations are often localized enough to fit between twists in the chain.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700