Determination of Average Internucleotide Distance in Variable Density ssDNA Nanobrushes in the Presence of Different Cations Species
详细信息    查看全文
文摘
Controlling conformational and mechanical properties of single-stranded DNA (ssDNA) nanobrushes is crucial for the design of new, miniaturized DNA-based functional biosensors. In particular, counterions diffusion and binding affinity to DNA impact on ssDNAs curvature and flexibility and modify their binding properties. In order to highlight the role of cation electrostatic screening and molecular crowding on the conformational stability of DNA brushes, we propose here to use atomic force microscopy (AFM) and AFM-based lithography to create ssDNA assemblies of variable density and to analyze their collective response to changes of ionic strength. We confined ssDNA brushes with controlled surface densities within a biorepellent self-assembled monolayer. We then monitored the topographic brush height variation upon changing salt type (NaCl, KCl, CaCl2, and MgCl2) and concentration inside the liquid cell. We show that the measured height is related to scaling law of salt concentration, in agreement with the theory of polyelectrolyte brush. We find the same scaling exponent 伪 = 鈭?/6 for the different density regimes exploited. Using this scaling model to fit our experimental data, we quantified structural parameters such as the average internucleotide distance (d) for ssDNA brushes of different and estimated surface density (蟽), featuring a strong dependence of d on different salts species.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700