Isomerizing Methoxycarbonylation of Alkenes to Esters Using a Bis(phosphorinone)xylene Palladium Catalyst
详细信息    查看全文
文摘
The synthesis and characterization of bulky diphosphine 1,2-bis(4-phosphorinone)xylene, BPX, and its palladium complexes [(BPX)PdCl2] and [(BPX)Pd(O2CCF3)2] are described. BPX was evaluated as a ligand in Pd-catalyzed isomerizing methoxycarbonylation. A broad range of alkenes, including terminal, internal, branched, and functionalized alkenes, can be converted to esters with activities and selectivities matching or surpassing the performance of the state-of-the-art palladium bis(di(tert-butyl)phosphino-o-xylene (Pd-DTBPX) catalyst. A molecular structure of the precatalyst [(BPX)Pd(O2CCF3)2] was obtained showing a square planar geometry and a bite angle of 100.11(3)°. Rhodium carbonyl complexes [(BPX)Rh(CO)Cl] and [(DTBPX)Rh(CO)Cl] were synthesized to compare the relative electronic parameters, revealing a ν(C≡O) of 1956.8 and 1948.3 cmp>–1p>, respectively, suggesting a reduced ability of BPX to donate electron density to the metal relative to DTBPX. Competitive protonation experiments between BPX and DTBPX in the presence of CH3SO3H exclusively produce [DTBPX(H)2]p>2+p>, providing additional evidence that BPX is a much weaker base than DTBPX. This could be due to either the effect of the electron-withdrawing ketone group in the phosphorinone ring or the compression of the C–P–C bond angle induced by the ring structure. The p>31p>P NMR (CDCl3) chemical shift of BPX is 5.6 ppm, upfield of DTBPX at 27.6 ppm. This anomalous result is attributed to a strong gamma substituent effect of C═O in the BPX ligand. The improved activity of Pd-BPX, relative to Pd-DTBPX, could be attributed to a more electrophilic Pdp>IIp> center, which could accelerate the rate-determining methanolysis step.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700