Interaction Tensors and Local Dynamics in Common Structural Motifs of Nitrogen: A Solid-State 14N NMR and DFT Study
详细信息    查看全文
文摘
14N solid-state NMR powder patterns have been obtained at high field (21.1 T) using broadband, frequency-swept pulses and a piecewise acquisition method. This approach allowed the electric field gradient (EFG) tensor parameters to be obtained from model organic and inorganic systems featuring spherically asymmetric nitrogen environments (CQ values of up to ca. 4 MHz). The advantages and limitations of this experimental approach are discussed, and the observation of 14N T2 relaxation anisotropy in certain systems is also reported, which can shed light on dynamic processes, allowing motional geometries and jump rates to be probed. In particular, we show that observable effects of dynamics on 14N spectra can be mediated by modulation of either the EFG tensor or heteronuclear dipolar couplings. It is demonstrated that the QCPMG protocol can be used to selectively enhance certain types of nitrogen environments on the basis of differences in T2. We also present the results of extensive density functional theory calculations on these systems, which show remarkably good correlation with the experimental results and allow the prediction of tensor orientations, assignment of parameters to crystallographic sites, and a rationalization of the origin of the EFG tensors in terms of contributions from individual molecular orbitals. This work demonstrates that ultra-wideline 14N solid-state NMR can, under favorable circumstances, be a straightforward, useful, and informative probe of molecular structure and dynamics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700