Structural and Spectroscopic Characterization of Iron(II), Cobalt(II), and Nickel(II) ortho-Dihalophenolate Complexes: Insights into Metal鈥揌alogen Secondary Bonding
详细信息    查看全文
文摘
Metal complexes incorporating the tris(3,5-diphenylpyrazolyl)borate ligand (TpPh2) and ortho-dihalophenolates were synthesized and characterized in order to explore metal鈥揾alogen secondary bonding in biorelevant model complexes. The complexes TpPh2ML were synthesized and structurally characterized, where M was Fe(II), Co(II), or Ni(II) and L was either 2,6-dichloro- or 2,6-dibromophenolate. All six complexes exhibited metal鈥揾alogen secondary bonds in the solid state, with distances ranging from 2.56 脜 for the TpPh2Ni(2,6-dichlorophenolate) complex to 2.88 脜 for the TpPh2Fe(2,6-dibromophenolate) complex. Variable temperature NMR spectra of the TpPh2Co(2,6-dichlorophenolate) and TpPh2Ni(2,6-dichlorophenolate) complexes showed that rotation of the phenolate, which requires loss of the secondary bond, has an activation barrier of 鈭?0 and 鈭?7 kJ/mol, respectively. Density functional theory calculations support the presence of a barrier for disruption of the metal鈥揾alogen interaction during rotation of the phenolate. On the other hand, calculations using the spectroscopically calibrated angular overlap method suggest essentially no contribution of the halogen to the ligand-field splitting. Overall, these results provide the first quantitative measure of the strength of a metal鈥揾alogen secondary bond and demonstrate that it is a weak noncovalent interaction comparable in strength to a hydrogen bond. These results provide insight into the origin of the specificity of the enzyme 2,6-dichlorohydroquinone 1,2-dioxygenase (PcpA), which is specific for ortho-dihalohydroquinone substrates and phenol inhibitors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700