Primary and Secondary Photodynamics of the Violet/Orange Dual-Cysteine NpF2164g3 Cyanobacteriochrome Domain from Nostoc punctiforme
详细信息    查看全文
文摘
Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors distantly related to phytochromes. Like phytochromes, CBCRs photointerconvert between two photostates that accompany photoisomerization of their bilin chromophores. While phytochromes typically exhibit red/far-red photocycles, CBCR photocycles are much more diverse, spanning the near-ultraviolet and the entire visible region. All CBCRs described to date have a conserved Cys residue covalently attached to the linear tetrapyrrole (bilin) chromophore; two CBCR subfamilies also exploit a second thioether linkage to the chromophore for detection of near-ultraviolet to blue light. Here, we present the photodynamic analysis of the insert-Cys CBCR NpF2164g3, a representative of the second class of two-cysteine CBCRs. Using broadband transient absorption pump鈥損robe spectroscopy, we characterize the primary (100 fs to 10 ns) and secondary (10 ns to 1 ms) photodynamics in both directions, examining photodynamics over nine decades of time. Primary isomerization dynamics occur on a 10 ps time scale for both forward and reverse reactions. In contrast to previous studies on Tlr0924, a representative of the other class of two-cysteine CBCRs, formation and elimination of the second linkage are slower than the 1 ms experimental range probed here. These results extend our understanding of dual-cysteine CBCR photocycles in the phytochrome superfamily.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700