One-Dimensional Coordination Polymers from Hexanuclear Manganese Carboxylate Clusters Featuring a {MnII4MnIII2(μ4-O)2} Core and S
详细信息    查看全文
文摘
The bridging of hexanuclear mixed-valent carboxylate coordination clusters of the type [Mn6O2(O2CR)10] (R = CMe3; CHMe2) featuring a {MnII4MnIII24-O)2} core by geometrically rigid as well as flexible spacer ligands such as pyrazine (pyz), nicotinamide (na), or 1,2-bis(4-pyridyl)ethane (bpe) results exclusively in one-dimensional (1D) coordination polymers. The formation of {[Mn6O2(O2CCMe3)10(Me3CCO2H)(EtOH)(na)]·EtOH·H2O}n (1), {[Mn6O2(O2CCHMe2)10(pyz)3]·H2O}n (2), and {[Mn6O2(O2CCHMe2)10(Me2CHCO2H)(EtOH)(bpe)]·Me2CHCO2H}n (3) illustrates a surprising preference of the interlinked {Mn6} units toward 1D coordination chains. In the solid-state, the observed chain propagation axes are either colinear (1 and 3) or perpendicular (2), whereby crystal packing is further influenced by solvent molecules. Magnetic properties of these network compounds can be rationalized based on that the magnetism of discrete [Mn6O2(O2CR)10]-type coordination clusters with all-antiferromagnetic intramolecular exchange and weak antiferromagnetic intercluster coupling in 1, 2, and 3 follows the expected exchange coupling strength of the employed spacer linkers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700