Intrinsically Fluorescent Glycoligands To Study Metal Selectivity
详细信息    查看全文
文摘
Glycoligands are a versatile family of ligands centered on a sugar platform and functionalized by Lewis bases. In this article, pentofuranoses were appended with the fluoroionophores 4-(pyridin-2鈥?yl)-1,2,3-triazol-1-yl and 4-(2鈥?1鈥?3鈥?benzothiadiazol-4鈥?yl)-1,2,3-triazol-1-yl using the 鈥渃lick-like鈥?cycloaddition [2 + 3] of Huisgen catalyzed by copper(I). Their fluorescence properties were used to study metal cation complexation. A possible selective functionalization of furanoscaffolds allows the synthesis of 鈥渕ixed鈥?glycoligands with the successive insertion of these different fluoroionophores. The metal selectivity and the chelating behavior of these six resulting intrinsically fluorescent glycoligands were investigated. The change in the configuration at the carbon C3 of furanose did not influence either the metal selectivity or the binding constants. However, different selectivities and binding constants were found to depend on the nature of the fluoroionophore moieties. Overall, the triazolylbenzothiadiazolyl chelating group was shown to be less efficient than the triazolylpyridyl claw for complexation. Interestingly enough, the triazolylbenzothiadiazolyl claw, which fluoresces in the visible range, did not interfere in the binding and selectivity of the more efficient triazolylpyridyl claw. This study suggests that the triazolylbenzothiadiazolyl moiety could be used as an adequate fluorescent reporter to qualitatively monitor complexation of other moieties.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700