Tuning Cross-Link Density in a Physical Hydrogel by Supramolecular Self-Sorting
详细信息    查看全文
文摘
Cross-link density is an important parameter for the macroscopic mechanical properties of hydrogels. Increasing network density leads to an increase in the storage and loss moduli of the gel and can be accomplished by either increasing the concentration of cross-linkers, or by reducing the fraction of mechanically inactive cross-links. Mechanically inactive cross-links consist of loops in the network, which do not contribute to the mechanical properties. Suppression of loop formation is demonstrated in a system of semiflexible supramolecular rods of poly(ethylene glycol)鈥揵is(urea) bolaamphiphiles. Use of a cross-linker which, due to self-sorting of its hydrophobic segments, preferentially connects different rods, increases the modulus of a hydrogel by a factor of 15 compared to a system without self-sorting. By using statistical-mechanical calculations, it is shown that this increase can be explained by the increased tendency of the cross-linkers to form bridges between the semiflexible rods and thus increasing the cross-link density in the supramolecular hydrogel.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700