Molecular Architecture of a C-3′-Methyltransferase Involved in the Biosynthesis of d-Tetronitrose
详细信息    查看全文
文摘
S-Adenosylmethionine (SAM)-dependent methyltransferases are involved in a myriad of biological processes, including signal transduction, chromatin repair, metabolism, and biosyntheses, among others. Here we report the high-resolution structure of a novel C-3′-methyltransferase involved in the production of d-tetronitrose, an unusual sugar found attached to the antitumor agent tetrocarcin A or the antibiotic kijanimicin. Specifically, this enzyme, referred to as TcaB9 and cloned from Micromonospora chalcea, catalyzes the conversion of dTDP-3-amino-2,3,6-trideoxy-4-keto-d-glucose to dTDP-3-amino-2,3,6-trideoxy-4-keto-3-methyl-d-glucose. For this analysis, two structures were determined to 1.5 Å resolution: one in which the enzyme was crystallized in the presence of SAM and dTMP and the other with the protein complexed to S-adenosylhomocysteine and its dTDP-linked sugar product. The overall fold of the monomeric enzyme can be described in terms of three domains. The N-terminal domain harbors the binding site for a zinc ion that is ligated by four cysteines. The middle domain adopts the canonical “SAM-binding” fold with a seven-stranded mixed β-sheet flanked on either side by three α-helices. This domain is responsible for anchoring the SAM cofactor to the protein. Strikingly, the C-terminal domain also contains a seven-stranded β-sheet, and it appears to be related to the middle domain by an approximate 2-fold rotational axis, thus suggesting TcaB9 arose via gene duplication. Key residues involved in sugar binding include His 181, Glu 224, His 225, and Tyr 222. Their possible roles in catalysis are discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700