High Thermopower with Metallic Conductivity in p-Type Li-Substituted PbPdO2
详细信息    查看全文
文摘
PbPdO2 is a band semiconductor with a band gap arising from the filled d8 nature of square-planar Pd2+. We establish that hole doping through Li substitution for Pd in PbPdO2 results in a p-type metallic oxide with a positive temperature coefficient of resistance for substitution amounts as small as 2 mol % Li for Pd. Furthermore, PbPd1–xLixO2 demonstrates a high Seebeck coefficient and is therefore an oxide thermoelectric material with high thermopower despite the metallic conductivity. Up to 4 mol % Li is found to substitute for Pd as verified by Rietveld refinement of neutron diffraction data. At this maximal Li substitution, the resistivity is driven below the Mott metallic maximum to 3.5 × 10–3 Ω cm with a Seebeck coefficient of 115 μV/K at room temperature, which increases to 175 μV/K at 600 K. These electrical properties are almost identical to those of the well-known p-type oxide thermoelectric NaxCoO2. Nonmagnetic Li-substituted PbPdO2 does not possess a correlated, magnetic state with high-spin degeneracy as found in some complex cobalt oxides. This suggests that there are other avenues to achieving high Seebeck coefficients with metallic conductivities in oxide thermoelectrics. The electrical properties coupled with the moderately low lattice thermal conductivities allow for a zT of 0.12 at 600 K, the maximal temperature measured here. The trend suggests yet higher values at elevated temperatures. First-principles calculations of the electronic structure and electrical transport provide insight into the observed properties.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700