Role of Water During Crystallization of Amorphous Cobalt Phosphate Nanoparticles
详细信息    查看全文
文摘
The transformation of amorphous precursors into crystalline solids and the associated mechanisms are still poorly understood. We illuminate the formation and reactivity of an amorphous cobalt phosphate hydrate precursor and the role of water for its crystallization process. Amorphous cobalt phosphate hydrate nanoparticles (ACP) with diameters of ∼20 nm were prepared in the absence of additives from aqueous solutions at low concentrations and with short reaction times. To avoid the kinetically controlled transformation of metastable ACP into crystalline Co3(PO4)2 × 8 H2O (CPO) its separation must be fast. The crystallinity of ACP could be controlled through the temperature during precipitation. A second amorphous phase (HT-ACP) containing less water and anhydrous Co3(PO4)2 was formed at higher temperature by the release of coordinating water. ACP contains approximately five molecules of structural water per formula unit as determined by thermal analysis (TGA) and quantitative IR spectroscopy. The Co2+ coordination in ACP is tetrahedral, as shown by XANES/EXAFS spectroscopy, but octahedral in crystalline CPO. ACP is stable in the absence of water even at 500 °C. In the wet state, the transformation of ACP to CPO is triggered by the diffusion and incorporation of water into the structure. Quantitative in situ IR analysis allowed monitoring the crystallization kinetics of ACP in the presence of water.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700