VxIn(2–x)S3 Intermediate Band Absorbers Deposited by Atomic Layer Deposition
详细信息    查看全文
文摘
Substitutional alloys of several thin film semiconductors have been proposed as intermediate band (IB) materials for use in next-generation photovoltaics, which aim to utilize a larger fraction of the solar spectrum without sacrificing significant photovoltage. We demonstrate a novel approach to IB material growth, namely atomic layer deposition (ALD), to allow unique control over substitutional-dopant location and density. Two new ALD processes for vanadium sulfide incorporation are introduced, one of which incorporates a vanadium(III) amidinate previously untested for ALD. Using this process, we synthesize the first thin film VxIn(2–x)S3 intermediate band semiconductors and further demonstrate that the V:In ratio, and therefore intraband gap density of states, can be finely tuned according to the ALD dosing schedule. Deposition on a crystalline In2S3 underlayer promotes the growth of a tetragonal β-In2S3-like phase VxIn(2–x)S3, which exhibits a distinct sub-band gap absorption peak with onset near 1.1 eV in agreement with computational predictions. However, the VxIn(2–x)S3 films lack the lower-energy transition predicted for a partially filled IB, and photoelectrochemical devices reveal a photocurrent response only from illumination with energy sufficient to span the parent band gap.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700