Matching Nanoantenna Field Confinement to FRET Distances Enhances F枚rster Energy Transfer Rates
详细信息    查看全文
文摘
F枚rster resonance energy transfer (FRET) is widely applied in chemistry, biology, and nanosciences to assess distances on sub-10 nm scale. Extending the range and applicability of FRET requires enhancement of the fluorescence energy transfer at a spatial scale comparable to the donor鈥揳cceptor distances. Plasmonic nanoantennas are ideal to concentrate optical fields at a nanoscale fully matching the FRET distance range. Here, we present a resonant aluminum nanogap antenna tailored to enhance single molecule FRET. A 20 nm gap confines light into a nanoscale volume, providing a field gradient on the scale of the donor鈥揳cceptor distance, a large 10-fold increase in the local density of optical states, and strong intensity enhancement. With our dedicated design, we obtain 20-fold enhancement on the fluorescence emission of donor and acceptor dyes, and most importantly up to 5-fold enhancement of the FRET rate for donor鈥揳cceptor separations of 10 nm. We also provide a thorough framework of the fluorescence photophysics occurring in the nanoscale gap volume. The presented enhancement of energy transfer flow at the nanoscale opens a yet unexplored facet of the various advantages of optical nanoantennas and provides a new strategy toward biological applications of single molecule FRET at micromolar concentrations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700