High-Relaxivity and Luminescent Silica Nanoparticles As Multimodal Agents for Molecular Imaging
详细信息    查看全文
文摘
The design and synthesis of a new bimodal contrast agent for magnetic resonance imaging and optical imaging is reported. Tunable-sized silica nanoparticles were synthesized by a microemulsion-mediated pathway and used as carriers for paramagnetic and luminescent probes. The near-infrared luminescent agent was a ruthenium complex that was directly entrapped in the silica shell to provide photoluminescence enhancement and to make it highly photostable as it was protected from the surrounding environment. The paramagnetic activity came from a Gd-DTPA derivative that was grafted on the silica surface. NMRD profiles showed a strong relaxivity enhancement (increase of 432% in the r1 value at 20 MHz) when the paramagnetic complex was grafted at the nanoparticle surface, because of a reduction of its mobility. Polyethylene glycol was also grafted at the nanoparticle surface to enhance the nanoparticle residence time in the bloodstream. A thorough characterization of the material confirmed its potential as a very effective bimodal contrast agent.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700