Dendritic Elastin-like Peptides: The Effect of Branching on Thermoresponsiveness
详细信息    查看全文
文摘
Elastin-like peptides (ELPs) have been used widely to confer thermoresponsive characteristics onto various materials, but to this point mostly linear ELPs have been studied. A class of linear and dendritic (branched) ELPs based on the GLPGL pentamer repeat unit was synthesized using an on-resin divergent strategy. The effect of peptide topology on the transition temperature (Tb>tb>) was examined using circular dichroism to study the peptide secondary structure transition and turbidity to measure the macroscopic phase transition (coacervation). Secondary structure transitions showed no dependence on topology, but a higher Tb>tb> was observed for dendritic peptides than for linear peptides with the same number of GLPGL repeats. The data support a phase transition model that consists of two neighboring processes: a secondary structure transition, related to intramolecular interactions, followed by coacervation, associated with intermolecular interactions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700