The Important Role of Hydroxyl on Oxidation Catalysis by Gold Nanoparticles
详细信息    查看全文
  • 作者:Matthew S. Ide ; Robert J. Davis
  • 刊名:Accounts of Chemical Research
  • 出版年:2014
  • 出版时间:March 18, 2014
  • 年:2014
  • 卷:47
  • 期:3
  • 页码:825-833
  • 全文大小:408K
  • 年卷期:v.47,no.3(March 18, 2014)
  • ISSN:1520-4898
文摘
Although gold is generally considered to be a relatively inert metal, supported gold nanoparticles have demonstrated exceptionally high catalytic activity for the oxidation of carbon monoxide and alcohols at modest temperatures. In both cases, the presence of hydroxyl groups substantially promotes the reaction rate, presumably by participating in the reaction.
Direct comparisons of CO oxidation to alcohol oxidation over gold catalysts have been difficult for scientists to explain. The former reaction is usually performed with gas phase reagents, whereas the latter reaction is often performed in the condensed phase. In this Account, we discuss the important role of hydroxyl for these two oxidation reactions catalyzed by gold, in terms of its influence on the turnover frequency.
During CO oxidation over gold, a hydroxyl can directly react with CO to form COOH, which eventually decomposes to CO2. The gas phase CO oxidation reaction likely occurs at the gold鈥搒upport interface, where adsorbed hydroxyl groups can be found after the addition of water to the feed. When we perform CO oxidation in liquid water, increasing the pH substantially promotes the reaction rate by providing an external source of hydroxyl. Likewise, we can also promote alcohol oxidations over gold catalysts in aqueous media by increasing the pH of the system. Since the hydroxyl groups are supplied through the reaction medium instead of on the support surface, the gold鈥搒upport interface is much less important in the aqueous phase reactions. Even bulk gold powder becomes an active oxidation catalyst in alkaline water.
The role of O2 in both CO and alcohol oxidation in aqueous media is to remove electrons from the gold surface that are deposited during oxidation, maintaining electroneutrality. Thus, the oxidation of CO and alcohols in water at high pH is analogous to the electrochemical oxidation reactions performed on gold electrodes. As the field of chemistry continues to encourage the development of sustainable chemical processes utilizing environmentally benign reaction conditions, the use of water as a 鈥済reen鈥?solvent becomes an attractive choice. In general, however, heterogeneous catalysts that scientists have developed over the last century for the petrochemical industry have not been optimized for use in aqueous media. Given the active role of water in oxidation reactions catalyzed by gold, additional research is needed to understand how water affects other catalytic transformations on traditional transition metal catalysts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700