Ring-Closing Metathesis of Allylsilanes As a Flexible Strategy toward Cyclic Terpenes. Short Syntheses of Teucladiol, Isoteucladiol, Poitediol, and Dactylol and an Attempted Synthesis of Caryophyllene
详细信息    查看全文
  • 作者:Matthew S. Dowling ; Christopher D. Vanderwal
  • 刊名:Journal of Organic Chemistry
  • 出版年:2010
  • 出版时间:October 15, 2010
  • 年:2010
  • 卷:75
  • 期:20
  • 页码:6908-6922
  • 全文大小:1377K
  • 年卷期:v.75,no.20(October 15, 2010)
  • ISSN:1520-6904
文摘
The development of a strategy consisting of allylsilane ring-closing metathesis and subsequent S<sub>Esub>′ electrophilic desilylation (allylsilane RCM/S<sub>Esub>′) to construct exo-methylidenecycloalkanes is described. Its utility is documented in short syntheses of teucladiol and poitediol. A key transformation in the synthesis of teucladiol is an aldol addition that establishes three stereochemical relationships in one step with ≥10:1 diastereoselectivity and provides a fascinating example of double stereodifferentiation/kinetic resolution with racemic reaction partners in the context of natural product synthesis. The synthesis of (±)-teucladiol required five steps from cyclopentenone and proceeded in 28% overall yield; adaptation of this route to an enantioselective synthesis of (−)-teucladiol enabled the determination of the absolute configuration of this terpene natural product. The use of fluoride-mediated conditions in the final desilylation step preserves the location of the alkene, delivering the natural product (±)-isoteucladiol (five steps and 21% yield from cyclopentenone). The synthesis of poitediol showcases the power of RCM for constructing eight-membered rings and features a highly diastereoselective epoxidation/fluoride-mediated fragmentation sequence for installing the exo-methylidene group with an adjacent hydroxyl-bearing stereocenter. The synthesis of (±)-poitediol required seven steps and proceeded in 18% overall yield. Again, fluoride-mediated desilylation of a late-stage intermediate (with retention of double-bond location) delivered the natural product (±)-dactylol (seven steps and 24% yield). Efforts directed toward incorporating the RCM/S<sub>Esub>′ sequence into a synthesis of caryophyllene are also disclosed. While ultimately unsuccessful, these efforts resulted in the identification of a novel metal alkylidene-promoted deallylation reaction of terminal 1,4-dienes. A possible mechanism for this unexpected deallylation reaction of 1,4-dienes is provided.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700