Deciphering Physical versus Chemical Contributions to the Ionic Conductivity of Functionalized Poly(methacrylate)-Based Ionogel Electrolytes
详细信息    查看全文
文摘
Polymer-supported ionic liquids (ionogels) are emergent, nonvolatile electrolytes for electrochemical energy storage applications. Here, chemical and physical interactions between the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI TFSI) and three different cross-linked polymer scaffolds with varying chemical functional groups have been investigated in ionogels fabricated via in situ UV-initiated radical polymerization of methyl methacrylate (MMA), 2,2,2-trifluoroethyl methacrylate (TFEMA), or 2-(dimethylamino)ethyl methacrylate (DMAEMA) and a small amount of the cross-linker pentaerythritol tetraacrylate. Experimental findings demonstrate that the chemical functionality of the polymer side groups can significantly affect the degree of ion dissociation within the ionic liquid component of the ionogel and that the fraction of dissociated ions is the dominant factor in determining relative ionic conductivity in these materials, rather than any large differences in ion diffusivity. The MMA-based polymer scaffold exhibits a stronger attractive interaction with EMI TFSI (as evidenced by a higher activation energy of ionic conductivity) compared to the TFEMA- and DMAEMA-based scaffolds, resulting in consistently lower ionic conductivity values for MMA-based ionogels. These results may offer guidance toward the rational selection of future polymer鈥搃onic liquid pairings in order to maximize the fraction of dissociated ions, thereby yielding highly conductive ionogel electrolytes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700