Molecular-Level Origins of Biomass Recalcitrance: Decrystallization Free Energies for Four Common Cellulose Polymorphs
详细信息    查看全文
文摘
Cellulose is a crystalline polymer of 尾1,4-d-glucose that is difficult to deconstruct to sugars by enzymes. The recalcitrance of cellulose microfibrils is a function of both the shape of cellulose microfibrils and the intrinsic work required to decrystallize individual chains, the latter of which is calculated here from the surfaces of four crystalline cellulose polymorphs: cellulose I尾, cellulose I伪, cellulose II, and cellulose IIII. For edge chains, the order of decrystallization work is as follows (from highest to lowest): I尾, I伪, 螜螜螜, and II. For cellulose I尾, we compare chains from three different locations on the surface and find that an increasing number of intralayer hydrogen bonds (from 0 to 2) increases the intrinsic decrystallization work. From these results, we propose a microkinetic model for the deconstruction of cellulose (and chitin) by processive enzymes, which when taken with a previous study [Horn et al. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 18089] identifies the thermodynamic and kinetic attributes of enzyme and substrate engineering for enhanced cellulose (or chitin) conversion. Overall, this study provides new insights into the molecular interactions that form the structural basis of cellulose, which is the primary building block of plant cell walls, and highlights the need for experimentally determining microfibril shape at the nanometer length scale when comparing conversion rates of cellulose polymorphs by enzymes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700