Nanostructural Evolution and Self-Healing Mechanism of Micellar Hydrogels
详细信息    查看全文
文摘
Understanding the nanoscale structure and dynamics of supramolecular hydrogels is essential for exploiting their self-healing mechanisms. We describe here nanostructural evolution and self-healing mechanism of hydrogels formed from in situ generated hydrophobically modified hydrophilic polymers and wormlike sodium dodecyl sulfate (SDS) micelles. We observe a conformational transition in wormlike SDS micelles upon addition of hydrophobic as well as hydrophilic monomers. Several hundred nanometer long SDS micelles completely disappear after the monomer addition, in favor of spherical micelles with a radius of 2.4 nm. After conversion of the monomers to hydrophobically modified polymer chains via micellar copolymerization, the spherical shape of the micelles remains intact but the radius increases to 2.8 nm. The interconnected spherical mixed micelles consisting of SDS and hydrophobic blocks of the polymer self-assemble to form a layered hydrogel structure. Self-healing response of the damaged hydrogel samples begins by reshaping the injured area into circular holes and ends by complete healing due to the intra- and interlayer mobility of the mixed micelles, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700