Fully Reversible Quantitative Phase Transfer of Gold Nanoparticles Using Bifunctional PNIPAM Ligands
详细信息    查看全文
文摘
Ligand exchange with end-functionalized polymers is often applied to render nanoparticles with enhanced colloidal stability, to change the solubility in various environments, and/or to introduce new functionalities. Here we show that exchange of citrate molecules with α-trithiocarbonate-ω-carboxyl-terminated poly(N-isopropylacrylamide) can successfully stabilize spherical gold particles of different diameters ranging from 15 to 53 nm. This is verified by transmission electron microscopy, dynamic light scattering, and extinction spectroscopy. We show that the polymer-decorated nanoparticles respond to temperature and pH allowing access to control interparticle interactions. In a range of pH slightly below the pKa of the terminal carboxyl groups, phase transfer of the particles from water to chloroform can be mediated by increasing the dispersion temperature above the lower critical solution temperature of poly(N-isopropylacrylamide). Upon cooling, fully reversible phase transfer to the water phase is observed. Extinction spectroscopy reveals phase transfer efficiencies close to 100% for every system under investigation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700