Reaction Pathway and Free Energy Landscape of Catalytic Oxidation of Carbon Monoxide Operated by a Novel Supported Gold鈥揅opper Alloy Cluster
详细信息    查看全文
文摘
An insight into the catalytic activities of pure gold (Au8) and gold-alloy (CuAu7) clusters supported on either MgO(100) or graphene has been undertaken in the search for an efficient, yet commercially appealing production of Au-based nanocatalysts. The present set of first-principles dynamical simulations shows that the gold and gold鈥揷opper alloy clusters destabilize to various extents on MgO but preserve their structures on the graphene support at room temperature. Consequently, the Cu atom remains embedded inside the Au cluster on MgO, whereas it can be easily exposed on the cluster surface on the graphene substrate. This feature appears to be a general key issue to trigger the catalytic reaction and discloses new perspectives for a rational synthesis of supported Au-based catalysts relying on the intrinsic chemical character of Cu which possesses a stronger affinity to oxygen than Au. Indeed, the Cu atom acts as an active site for the approach of O2 and keeps the molecule bound to the cluster. We clarified that the catalytic oxidation of CO occurs on the graphene-supported CuAu7 in a highly selective Langmuir鈥揌inshelwood type reaction, addressing the long-standing controversy about the actual reaction mechanism for this type of catalysis. Our findings contribute to the development of efficient and commercially appealing supported alloy clusters driven by a proper choice of dopants and supports, thus reducing the use of expensive gold.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700