Transcriptional Profile of Genes Involved in the Biosynthesis of Phytate and Ferritin in Coffea
详细信息    查看全文
文摘
The present work aimed to study the control of the biosynthesis of the antinutritional factor phytate and its associated Fe-rich protein family, ferritin, in coffee. Phytate has the ability to chelate Fe, making it unavailable to human absorption. The Coffea genome databases were queried for genes associated with phytate metabolism and ferritin genes. The genetic framework for phytate biosynthesis and its reverse pathway was identified in silico analyses and indicate that Coffea phosphatidyl inositol kinase and monophosphatase families play nonredundant roles in phytate metabolism. The transcriptional profiles of phytate biosynthesis key-genes MYO-INOSITOL(3)P1 SYNTHASE, two genes coding for PHOSPHATIDYL INOSITOL KINASE, and three FERRITIN genes were temporally evaluated by qPCR in coffee seeds from two crop locations, Adamantina-SP and Ouro-Fino-MG, the last one traditionally associated with high-quality coffee beverage grain. A targeted metabolome profile of phytic acid contents throughout three fruit maturation stages in association with the transcriptional analysis was also obtained. Taken together, our data indicate that the investigated local conditions did not cause significant alterations in phytate biosynthesis. Futhermore, the temporal transcriptional profiling revealed that candidate gene expression is regulated independently of phytate accumulation. In contrast, the expression profile of ferritin-unit genes is affected by environmental conditions and genetic background. The roles of the investigated genes are discussed concerning the quality of coffee beverage.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700