Selective Protonation of Acidic Residues Triggers Opsin Activation
详细信息    查看全文
文摘
Rhodopsin, the visual pigment in the retina, is a Class A G protein-coupled receptor (GPCR) covalently bound to retinal chromophore. In dark conditions, retinal is in the cis-isomeric state, stabilizing the rhodopsin inactive state as an inverse agonist. After light absorption, retinal undergoes an isomerization photoreaction to trans-retinal, which includes a conformational change of the receptor to its active state. In the absence of retinal, the apoprotein opsin presents a low level of constitutive activity, which depends on pH, with higher propensity of activation at acidic pH. To examine the effect and the underlying mechanism that protonation may have on opsin activation, a number of MD simulations were run varying the number and identity of acidic residues selected for protonation. Results show that the combined protonation of D83, E113, and E247 is of special relevance for the induction of receptor activation. Subsequent conformational analysis of the MD trajectories provides a structural mechanistic insight into the opsin activation process. Furthermore, because protonation seems to be a determining step in the activation of other GPCRs, the methodology and rationale used herein can be extended to mechanistic studies of GPCRs in general.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700