Molecular Dynamics and QM/MM Calculations Predict the Substrate-Induced Gating of Cytochrome P450 BM3 and the Regio- and Stereoselectivity of Fatty Acid Hydroxylation
详细信息    查看全文
  • 作者:Kshatresh Dutta Dubey ; Binju Wang ; Sason Shaik
  • 刊名:Journal of the American Chemical Society
  • 出版年:2016
  • 出版时间:January 27, 2016
  • 年:2016
  • 卷:138
  • 期:3
  • 页码:837-845
  • 全文大小:634K
  • ISSN:1520-5126
文摘
Theory predicts herein enzymatic activity from scratch. We show that molecular dynamics (MD) simulations and quantum-mechanical/molecular mechanics (QM/MM) calculations of the fatty acid hydroxylase P450 BM3 predict the binding mechanism of the fatty acid substrate and its enantio/regioselective hydroxylation by the active species of the enzyme, Compound I. The MD simulations show that the substrate’s entrance involves hydrogen-bonding interactions with Pro25, Glu43, and Leu188, which induce a huge conformational rearrangement that closes the substrate channel by pulling together the A helix and the β1 sheet to the F/G loop. In turn, at the bottom of the substrate’s channel, residue Phe87 controls the regioselectivity by causing the substrate’s chain to curl up and juxtapose its CH2 positions ω-1/ω-2/ω-3 to Compound I while preventing access to the endmost position, ω-CH3. Phe87 also controls the stereoselectivity by the enantioselective steric blocking of the pro-S C–H bond, thus preferring R hydroxylation. Indeed, the MD simulations of the mutant Phe87Ala predict predominant ω hydroxylation. These findings, which go well beyond the X-ray structural data, demonstrate the predictive power of theory and its insight, which can potentially be used as a partner of experiment for eventual engineering of P450 BM3 with site-selective C–H functionalization capabilities.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700