Evaluation of the Interaction of Propranolol with 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) Liposomes: The Langmuir Model
详细信息    查看全文
文摘
The interaction of the amine containing β-receptor blocking agent propranolol (Ppn) with dimyristoylphosphatidylcholine (DMPC) vesicles was studied. Using a centrifugation assay, the protonated as well as unprotonated amount of the drug sorbed was verified, whereas the binding of the protonated Ppn was deduced from the surface charge density of the vesicles as calculated from electrophoretic mobility measurements. Assuming a 1:1 binding, a Langmuir model with only two parameters was found to be sufficient to fit all experimental data. Sensitivity analysis revealed that the estimated values of these parameters were reliable and independent from each other. These parameters were truly intrinsic, as electrostatic interactions were accounted for in the model. It was found that the pKa of Ppn shifted from 9.24, when disolved in water, downward by 1.34 units upon sorption, indicating that the intrinsic partition coefficient of the unprotonated Ppn was about 22 times higher than that of the protonated analog. In addition, a significant increase in the affinity of both Ppn analogs with increasing salt concentration was found. Theoretical analysis revealed that the Langmuir sorption model may be considered as a partitioning model with decreasing partition coefficient as the sorbed amount increases. Thus, the Langmuir model provides a better fit than a simple partition model at conditions that induce a substantial amount of propranolol sorbed, such as high pH and high propranolol concentrations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700