Switchable Charge Injection Barrier in an Organic Supramolecular Semiconductor
详细信息    查看全文
文摘
We disclose a supramolecular material that combines semiconducting and dipolar functionalities. The material consists of a discotic semiconducting carbonyl-bridged triarylamine core, which is surrounded by three dipolar amide groups. In thin films, the material self-organizes in a hexagonal columnar fashion through π-stacking of the molecular core and hydrogen bonding between the amide groups. Alignment by an electrical field in a simple metal/semiconductor/metal geometry induces a polar order in the interface layers near the metal contacts that can be reversibly switched, while the bulk material remains nonpolarized. On suitably chosen electrodes, the presence of an interfacial polarization field leads to a modulation of the barrier for charge injection into the semiconductor. Consequently, a reversible switching is possible between a high-resistance, injection-limited off-state and a low-resistance, space-charge-limited on-state. The resulting memory diode shows switchable rectification with on/off ratios of up to two orders of magnitude. This demonstrated multifunctionality of a single material is a promising concept toward possible application in low-cost, large-area, nonvolatile organic memories.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700