Location of Hole and Electron Traps on Nanocrystalline Anatase TiO2
详细信息    查看全文
文摘
The defect photoluminescence from TiO2 nanoparticles in the anatase phase is reported for nanosheets which expose predominantly (001) surfaces and compared to that from conventional anatase nanoparticles which expose mostly (101) surfaces. Also reported is the weak defect photoluminescence of TiO2 nanotubes, which we find using electron backscattered diffraction to consist of walls which expose (110) and (100) facets. The nanotubes exhibit photoluminescence that is blue-shifted and much weaker than that from conventional TiO2 nanoparticles. Despite the preponderance of (001) surfaces in the nanosheet samples, they exhibit photoluminescence similar to that of conventional nanoparticles. We assign the broad visible photoluminescence of anatase nanoparticles to two overlapping distributions: hole trap emission associated with oxygen vacancies on (101) exposed surfaces, which peaks in the green, and a broader emission extending into the red which results from electron traps on undercoordinated titanium atoms, which are prevalent on (001) facets. The results of this study suggest how morphology of TiO2 nanoparticles could be optimized to control the distribution and activity of surface traps. Our results also shed light on the mechanism by which the TiCl4 surface treatment heals traps on anatase and mixed-phase TiO2 films and reveals distinct differences in the trap-state distributions of TiO2 nanoparticles and nanotubes. The molecular basis for electron and hole traps and their spatial separation on different facets is discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700