Influence of Synthesis Conditions on Properties of Ethane-Bridged Periodic Mesoporous Organosilica Materials as Revealed by Spin-Probe EPR
详细信息    查看全文
  • 作者:Feng Lin ; Myrjam Mertens ; Pegie Cool ; Sabine Van Doorslaer
  • 刊名:Journal of Physical Chemistry C
  • 出版年:2013
  • 出版时间:November 7, 2013
  • 年:2013
  • 卷:117
  • 期:44
  • 页码:22723-22731
  • 全文大小:374K
  • 年卷期:v.117,no.44(November 7, 2013)
  • ISSN:1932-7455
文摘
A thorough investigation of the formation mechanism and surface properties of periodic mesoporous organosilicas (PMOs) is of crucial importance for further tuning and improving of the structural characteristics and applications of these promising meso-structured materials. In the present paper, the effects of the synthesis conditions on the properties of ethane-bridged PMOs were studied by means of spin-probe electron paramagnetic resonance (EPR) spectroscopy complemented with standard characterization techniques for porous materials. When spin probes were dissolved in the synthesis mixture, the influence of the precursor type on the formation kinetics of ethane-bridged PMOs could be tested. The use of the precursor 1,2-(tris(triethoxysilyl)ethane instead of bis(trimethoxysilyl)-ethane significantly slows the pore formation, leading to materials with larger pore diameters. Furthermore, different spin probes with varying sizes and polarities were adsorbed onto two types of ethane-bridged PMOs synthesized at room temperature or at 95 掳C. The effect of surface polarity, surface water, and pore size on the incorporation and mobility of molecules in the PMO pores was thus monitored. Ethane-bridged PMO materials synthesized at room temperature were found to have a smaller pore size and a larger amount of physisorbed water than those synthesized at 95 掳C, influencing strongly the insertion of molecules in the pores as observed by spin-probe EPR.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700