Metabolic Precursor of Cholesterol Causes Formation of Chained Aggregates of Liquid-Ordered Domains
详细信息    查看全文
文摘
7-Dehydrocholesterol, an immediate metabolic predecessor of cholesterol, can accumulate in tissues due to some metabolic abnormalities, causing an array of symptoms known as Smith–Lemli–Opitz syndrome. Enrichment of cellular membranes with 7-dehydrocholesterol interferes with normal cell-signaling processes, which involve interaction between rafts and formation of the so-called signaling platforms. In model membranes, cholesterol-based ordered domains usually merge upon contact. According to our experimental data, ordered domains in the model systems where cholesterol is substituted for 7-dehydrocholesterol never merge on the time scale of the experiment, but clusterize into necklace-like aggregates. We attribute such different dynamical behavior to altered properties of the domain boundary. In the framework of thickness mismatch model, we analyzed changes of interaction energy profiles of two approaching domains caused by substitution of cholesterol by 7-dehydrocholesterol. The energy barrier for domain merger is shown to increase notably, with simultaneous appearance of another distinct local energy minimum. Such energy profile is in perfect qualitative agreement with the experimental observations. The observed change of domain dynamics can impair proper interaction between cellular rafts underlying pathologies associated with deviations in cholesterol metabolism.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700