Monomethylarsonous Acid Destroys a Tetrathiolate Zinc Finger Much More Efficiently than Inorganic Arsenite: Mechanistic Considerations and Consequences for DNA Repair Inhibition
详细信息    查看全文
文摘
Arsenic compounds are human carcinogens. The ingested inorganic arsenic is metabolized to methylated derivatives, which are considered to be more toxic than the inorganic species. Interactions of trivalent arsenicals with thiol groups of proteins are believed to be important for arsenic carcinogenesis, but inorganic arsenite appears to bind to thiol groups more strongly than the methylated AsIII species. Inhibition of the nucleotide excision repair pathway of DNA repair (NER) is likely to be of primary importance in arsenic carcinogenesis. Previously, we demonstrated that methylated AsIII compounds are more efficient than arsenite in releasing zinc from ZnXPAzf, the zinc finger of XPA, a crucial member of the NER complex [Schwerdtle, T., Walter, I., and Hartwig, A. (2003) Arsenite and its biomethylated metabolites interfere with the formation and repair of stable BPDE-induced DNA adducts in human cells and impair XPAzf and Fpg. DNA Repair (Amsterdam) 2, 1449–1463]. In this work, we used ESI-MS to compare aerobic reactivities of arsenite and monomethylarsonous acid (MMAIII) toward ZnXPAzf on the molecular level. We demonstrated that equimolar MMAIII released ZnII from ZnXPAzf easily, forming mono- and diarsenical derivatives of XPAzf. This reaction was accompanied by oxidation of unprotected thiol groups of the monomethylarsinated peptide to intramolecular disulfides. The estimated affinity of MMAIII to XPAzf is 30-fold higher than that established previously for arsenite binding to the thiol groups. No binding of arsenite to the thiol groups of XPAzf was observed under our experimental conditions, and a 10-fold excess of arsenite was required to partially oxidize ZnXPAzf. These results indicate a particular susceptibility of tetrathiolate zinc fingers to MMAIII, thereby providing a novel molecular pathway in arsenic carcinogenesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700